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Exercise 1.1 Induction.

1. Prove via mathematical induction, that the following holds for any positive integer n:

n∑
i=1

i3 =
n2(n+ 1)2

4
.

• Base Case.
Let n = 1. �en:

1∑
i=1

i3 = 13 = 1 =
12 · 22

4
=

12(1 + 1)2

4

• Induction Hypothesis.
Assume that the property holds for some postiive integer k. �at is:

k∑
i=1

i3 =
k2(k + 1)2

4

• Inductive Step.

Wemust show that the property holds for k+1. Add (k+1)2 to both sides of our inductive
hypothesis.

k+1∑
i=1

i3 =
( k∑

i=1

i3
)
+ (k + 1)3

I.H.
=

k2(k + 1)2

4
+ (k + 1)3 =

k2(k + 1)2

4
+

4(k + 1)(k + 1)2

4

=
(k2 + 4k + 4)(k + 1)2

4
=

(k + 2)2(k + 1)2

4
=

(k + 1)2((k + 1) + 1)2

4
.

By the principle of mathematical induction, this is true for any positive integer n.



2. Prove via mathematical induction that for any positive integer n,

(1 + x)n =
n∑

i=0

(
n

i

)
xi .

• Base Case.
Let n = 1. �en (1 + x)1 =

(
1
0

)
x0 +

(
1
1

)
x1 =

∑n
i=0

(
n
i

)
xi.

• Induction Hypothesis.
Assume that the property holds for some positive integer k. �at is:

(1 + x)k =
k∑

i=0

(
k

i

)
xi.

• Inductive Step.
We must show that the property holds for k + 1.

(1 + x)k+1 = (1 + x)(1 + x)k

I.H.
= (1 + x)

k∑
i=0

(
k

i

)
xi

=
( k∑

i=0

(
k

i

)
xi
)
+
( k∑

i=0

(
k

i

)
xi+1

)
=
( k∑

i=0

(
k

i

)
xi
)
+
( k+1∑

i=1

(
k

i− 1

)
xi
)

=

(
k

0

)
x0 +

k∑
i=1

((k
i

)
xi +

(
k

i− 1

)
xi
)
+

(
k

k

)
xk+1

=

(
k + 1

0

)
x0 +

k∑
i=1

(
k + 1

i

)
xi +

(
k + 1

k + 1

)
xk+1 =

k+1∑
i=0

(
k + 1

i

)
xi.

By the principle of mathematical induction, this is true for any positive integer n.

Exercise 1.2 Acyclic Graphs.

De�nitions:

• A graph is acyclic if there are no cycles. A cycle is a nontrivial path from vertex a to itself.

• A graph is connected if there is a path between every pair of vertices.

• An acyclic graph is called non-trivial if it has at least one edge.

For a given connected acyclic graph G = (V,E), avoid using induction and prove the following:

1. �ere is a unique path between any pair of vertices u and v, such that u 6= v.

Solution: Suppose there are two di�erent paths between u and v. Let x be the �rst place they
diverge. Let y be the next place they meet. �en there are two disjoint subpaths between x and
y which is a cycle. �is contradicts the acyclic assumption. �us there is only one path.
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2. Adding an edge between any pair of vertices creates a cycle.

Solution:�ere is a unique path between u and v already proven by (1). Adding in an edge to u
and v will from the cycle of that path plus this new edge.

3. Show that any non-trivial acyclic graph has at least two vertices of degree 1.
Hint: consider some longest path.

Solution: Let G be a non-trivial acyclic graph. Consider some longest path P = v1, v2, . . . , vm
in G. �is path exists since the set of paths is not empty (because G has at least one edge) and
lengths of paths are bounded by the number of vertices in G (because G is acyclic).

Let’s prove that vertices v1 and vm have degree 1 in G. Assume without loss of generality that
deg v1 > 1 (it cannot be 0 since v1 has a neighbour v2). It means that v1 has at least two di�erent
neighbours, so there exists a neighbour u of v1 di�erent from v2.

Case 1 If u belongs to P , then u = vi, where 2 < i ≤ m, and vi, v1, v2, . . . , vi is a cycle in G,
which contradicts the fact that G is acyclic.

Case 2 Otherwise, u, v1, . . . , vm is a path in G of length m + 1, which contradicts the fact that P
is a longest path in G. Hence deg v1 = 1.

Using the same argument one can show that deg vm = 1.�erefore, any non-trivial acyclic graph
has at least two vertices of degree 1.

Exercise 1.3 Number of Edges in Graphs (1 point).

De�nition:

• A Tree is an acyclic graph that is connected.

1. Show by mathematical induction that the number of edges in a tree with n vertices is n− 1.

• Base Case: Let n = 1. �ere is a single node, and there cannot be any edge from it to itself
because then there would be a cycle. �ere are no other nodes to connect, so there must be
0 edges.

• Induction Hypothesis: Assume that any tree with k vertices has exactly k − 1 edges.

• Inductive Step: Suppose we are given a tree with k + 1 vertices. Remove any vertex of
degree 1 from the tree. �ere must be such a vertex to remove because the tree is acyclic
and connected and non-trivial (See Exercise 1.2.4). �is results in a tree with k vertices. By
the induction hypothesis, this tree has k− 1 edges. Add the leaf node back to the tree. �is
adds only one edge to the tree, since the leaf has no children, and each node has in-degree
equal to one. �us the full tree has k edges.

By the principle of mathematical induction, a tree with n vertices has n − 1 edges for any
positive integer n.

2. Prove or disprove that every graph with n vertices and n− 1 edges is a tree.
Solution: Consider the following graph: label the vertices with indices {1, . . . , n}. For i ∈
2, ..., n− 1, place an edge from vertex i to vertex i − 1, and place an edge from vertex n − 1
to vertex 1. As this is a cycle, there are n vertices and there are n − 1 edges, this is a counter-
example, and disproves the proposition.
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Exercise 1.4 Bipartite Graphs (2 points).

1. Consider the following lemma: If G is a bipartite graph and the bipartition of G is X and Y , then

∑
v∈X

deg(v) =
∑
v∈Y

deg(v) (1)

�en, use the lemma to prove that you can not cover the area in Figure 1, with the given tiles of
size 1× 2 and 2× 1, depicted in the same �gure.

TILES
AREA

Figure 1: Cover the area with the given tiles

Solution: We can think of the area as a standard 8 × 8 chessboard such that the top le� square
and the bo�om right square have been removed. We create a bipartite graph G = (V,E) from
the chess board. Let each white square be a vertex in X and let each black square be a vertex in
Y . Note that each tile must cover exactly one black and one white square and so we will connect
a vertex in X to a vertex in Y if a tile covers both of them. Because we have removed the upper
le� and the lower right square, which are both either white or black, we have that, without loss
of generality, |X| = 30 and |Y | = 32. Now suppose that each of the squares was able to be
covered. �en each vertex has degree exactly one, since it is covered by one tile. �is means that
deg(v) = 1 for all v ∈ V . Consequently:

∑
v∈X

deg(v) = |X| and
∑
v∈Y

deg(v) = |Y | (2)

Finally, taking Lemma 1, we have:

∑
v∈X

deg(v) =
∑
v∈Y

deg(v)⇒ |X| = |Y | (3)

Which is a contradiction. �us you can not cover the area with the given tiles.

2. Coloring Bipartite Graphs

Suppose you are given a map with n vertical lines. �e areas of the map (i.e. the areas between
the lines) must be colored such that any two neighboring areas have di�erent colors. Prove by
mathematical induction that any such map can be colored with exactly two colors. Hint: Suppose
you start with a map with two vertical lines, dividing the map into three regions, colored red,
blue, and red from right to le�. What happens if you draw a vertical line through the blue region?
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How can you modify the colors of the regions to maintain the property that neighboring regions
have di�erent colors?

• Base Case Let n = 1. �en there are two areas (one on each side of the line). Color one
area red and the other blue.

• InductionHypothesisAssume that for any map with k vertical lines, it is possible to color
the map with only two colors.

• Inductive Step We now have a map with k + 1 vertical lines. We must show that we can
color the map as described with only two colors. Remove any line from the map. �ere are
now k vertical lines, and we can color the map according to the induction hypothesis. Next
we add the line that we previously removed from the graph. �e line now separates two
areas that have the same color. To �x this, we can invert the colors of the areas to the le�
of the line.

By the principle of mathematical induction, this is true for any positive integer n.

Exercise 1.5 Sudoku.

�e classic Sudoku game involves a 9 × 9 grid. �is grid is divided into nine 3 × 3 nonoverlapping
subgrids, called blocks. �e grid is partially �lled by digits from 1 to 9. �e objective is to �ll this grid
with digits so that each column, each row, and each block contains all of the digits from 1 to 9. Each
digit can only appear once in a row, column or block (see Figure 2).

(a) A Sudoku puzzle (b) Solution

Figure 2: Sudoku

Model this as a graph problem: give a precise de�nition of the graph involved and state the speci�c
question about this graph that needs to be answered.What is the maximum vertex degree of this graph?

Solution: �e graph G has 81 vertices, one vertex for each cell. Two distinct vertices u and v are
connected by an edge if and only if at least one of the following conditions holds:

1. the cells u and v are in the same row.

2. the cells u and v are in the same column.

3. the cells u and v are in the same block.

�e aim is to construct a 9-coloring ofG, given a partial 9-coloring (de�ned on some subset of vertices).
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Maximum vertex degree of G is 20. In fact, all vertices have degree 20. Indeed, for each vertex u there
are 8 neighbours of u in the row which contains u, 8 neighbours of u in the column which contains u,
and 4 neighbours of u in the block which contains u (excluding neighbours in the same row/column as
u).

Submission: On Monday, 1.10.2018, hand in your solution to your TA before the exercise class starts.
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